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FACTORING NONNIL IDEALS INTO
PRIME AND INVERTIBLE IDEALS

AYMAN BADAWI

ABSTRACT

For a commutative ring R, let Nil(R) be the set of all nilpotent elements of R, Z(R) the set of all
zero divisors of R, and T(R) the total quotient ring of R. Set H = {R | R is a commutative ring
and Nil(R) is a divided prime ideal of R}. For a ring R € H, let ¢ : T(R) — Ryir) be such
that ¢(a/b) = a/b for every a € R and b € R\Z(R). A ring R is called a ZPUI ring if every proper
ideal of R can be written as a finite product of invertible and prime ideals of R. This paper gives
a generalization of the concept of ZPUI domains (which was extensively studied by Olberding) to
the context of rings that are in the class H. Let R € H. If every nonnil ideal of R can be written
as a finite product of invertible and prime ideals of R; then R is called a nonnil ZPUI ring; also, if
every nonuil ideal of ¢(R) can be written as a finite product of invertible and prime ideals of (R},
then R is called a nonnil ¢-ZPUI ring. The theory of ¢-ZPUI rings is shown here to resemble that
of ZPUI domains.

1. Introduction

We assume throughout that all rings are commutative with 1 # 0. Let R be a
ring. Then T(R) denotes the total quotient ring of R, Z(R) denotes the set of zero
divisors of R, and Nil(R) denotes the set of nilpotent elements of R. The elements
in R\ Z(R) are referred to as regular elements, and an ideal [ is said to be regular
if it contains at least one regular element. For a nonzero ideal [, regular or not,
we let I™' = {z € T(R) | I C R}. An ideal I of a ring R is called invertible if
II"' = R.

We start by recalling some background material. Recall from [12] and [5] that
a prime ideal P of R is called a divided prime if P C (x) for every x € R\ P;
thus a divided prime ideal is comparable to every ideal of R. In [4, 6-9], the
author investigated the class of rings H = {R | R is a commutative ring and
Nil(R) is a divided prime ideal of R}. Also, Anderson, Lucas and the author have
undertaken further investigations into the class H in [2, 3] and, most recently, [10].

In this paper, we take the concept of the factorization of ideals of an integral
domain into a finite product of invertible and prime ideals, which was previously
extensively studied by Olberding [21], and we generalise it to the context of rings
that are in the class H. Observe that if R is an integral domain, then R € H. An
ideal T of a ring R is said to be a nonnil ideal if I ¢ Nil(R). For each R € H, the map
¢ : T(R) — Ryu(r), defined by ¢(a/b) = a/b for eacha € Rand b € R\Z(R), was
introduced by the author in [4]. The map ¢ is a ring homomorphism from T'(R)
into Ryii(r), and ¢ restricted to R is a ring homomorphism from R into Ryir)
given by ¢(x) = z/1 for each z € R. Note that T(¢(R)) = Ruury Let R € H.
Then R is said to be a ¢-ZPUI ring if each nonnil ideal T of ¢(R) can be written
as [ = JP, Py ... P,, where J is an invertible ideal of &(R) and Py, P»,..., P, are
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prime ideals of ¢(R). If every nonnil ideal I of R can be writtenas I = JP,P,... P,,
where J is an invertible ideal of R and P;, Py, ..., P, are prime ideals of R, then
R is said to be a nonnil ZPUI ring. Commutative ¢-ZPUI rings that are in H are
characterized in Theorem 2.9. Examples of ¢-ZPUI rings that are not ZPUT rings
are constructed in Theorem 2.13. It is shown in Theorem 2.14 that a ¢-ZPUI ring
is the pullback of a ZPUI domain. It is shown in Theorem 3.1 that a nonnil ZPUI
ring is a ¢-ZPUI ring. Examples of ¢-ZPUI rings that are not nonnil ZPUI rings
are constructed in Theorem 3.2.

If Nil(R) is divided, then it is also the nilradical of T(R), and the kernel of the
map ¢ is also a common ideal of R and T(R). Other useful features of each ring
R € H (see [4]) include the following:

(i) ¢(R) € H;
(ii) T(#(R)) = Rnucg) is quasilocal with maximal ideal Nil(¢(R));
(iii) ¢(R) is naturally isomorphic to R/ Ker(¢);
(iv) Nil(Byiyr)) = o(Nil(R)) = Nil(¢(R)) = Z(4(R)); and
(v) Rnigr)/ Nil{(¢(R)) = T(¢(R))/Nil(¢(R)) is the quotient field of ¢(R)/
Nil(¢(R)).
If I is a nonnil ideal of a ring R € H, then observe that Nil(R) C I.

Throughout the paper we will use the technique of the idealization of a module to
construct examples. Recall that for an R-module B, the idealization of B over R is
the ring formed from R x B by defining addition and multiplication as (r, a)+(s, b) =
(r+s,a+b) and (r,a)(s,b) = (rs,rb + sa), respectively. A standard notation for
the ‘idealized ring’ is R(+)B. See [17-19] for the basic properties of these rings.
For further background material, we recommend the papers [1, 11, 14, 15].

2. ¢-ZPUI RINGS

We recall the following two lemmas from [2], which will allow us to prove the
theorem that follows them.

LeEmMA 2.1 [2, Lemma 2.3]. Let R € H with Nil(R) = Z(R), and let I be an
ideal of R. Then I is an invertible ideal of R if and only if I/ Nil(R) is an invertible
ideal of R/ Nil(R).

LEMMA 2.2 [2, Lemma 2.5]. Let R € H, and let P be a prime ideal of R. Then
R/P is ring-isomorphic to ¢(R)/¢(P). In particular, R/ Nil(R) is ring-isomorphic
to 6(R)/ Nil(6(R)).

THEOREM 2.3. Let R € 'H. Then R is a ¢-ZPUI ring if and only if R/ Nil(R)
is a ZPUI domain.

Proof.  Suppose that R is a ¢-ZPUI ring. Set D = ¢(R)/ Nil(¢(R)), and let L
be a nonzero ideal of D. Then L = I/Nil(¢(R)) for some nonnil ideal I of ¢(R).
Thus I = JP P, ... P,, where J is an invertible ideal of ¢(R) and Py, P,, ..., P, are
prime ideals of ¢(R). Since Nil(¢(R)) = Z(¢(R)), we conclude that J/ Nil(¢p(R)) is
an invertible ideal of D, by Lemma 2.1. Thus

L =1/Nil(¢(R)) = (J/ Nil(¢(R)))(P1/ Nil(¢(R))) ... (P, / Nil(6(R))),
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and hence D is a ZPUI domain. Since D is ring-isomorphic to R/Nil(R) by
Lemma 2.2, we conclude that R/ Nil(R) is a ZPUI domain.

Conversely, suppose that R/ Nil(R) is a ZPUI domain. Then D = ¢(R)/ Nil(¢(R))
is a ZPUI domain, by Lemma 2.2. Let I be a nonnil ideal of ¢(R). Since ¢(R) € H,
I/ Nil(¢(R)) is a nonzero ideal of D. Thus

I/ Nil(6(R)) = (J/ Nil($(R)))(P1/ Nil($(R))) . .. (Pu/ Nil(6(R))),

where J is an invertible ideal of ¢(R) (by Lemma 2.1) and P, P,, ..., P, are prime
ideals of ¢(R). We show that [ = JP,P,...P,. This follows since Nil(¢(R)) C I
because Nil(¢(R)) C F; for each i and Nil(¢(R)) is a divided prime ideal of ¢(R).

Thus R is a ¢-ZPUI ring. ]

LEMMA 2.4, Let R € H, and let I be a nonnil ideal of R. Then I is a finitely
generated ideal of R if and only if I / Nil(R) is a finitely generated ideal of R/ Nil(R).

Proof.  The proof is similar to the proof of [9, Theorem 2.2]. Suppose that I is a
nonnil finitely generated ideal of R. Since Nil(R) C I, it is clear that I/Nil(R) is
a finitely generated ideal of R/ Nil(R). Conversely, suppose that J = I/Nil(R) is
a finitely generated ideal of R/ Nil(R). Then J = (i; + Nil(R),...,4, + Nil(R)) for
some values of 4, in I. Since Nil(R) is divided, we may assume that all the 7,, are
nonmnilpotent elements of R, and thus Nil(R)} C (41). Now let x be a nonnilpotent
element of I. Then x + Nil(R) = ¢1iy + ... + cpi, + Nil(R) in R/ Nil(R) for some
values of ¢, in R. Hence there is a w € Nil(R) such that x +w = ¢1i; + ... + ¢, ip
in R. Since z € I\ Nil(R), z | w in R. Thus w = z f for some f € Nil(R). Hence

z+tw=c+zf=x2(1+f)=ci +...+cuin in R.

Since f € Nil(R), 1+ f is a unit of R. Thus = € (i1,...,4,), and hence [ is a finitely
generated ideal of R. ]

Recall from [19] that a ring R is called a Priifer ring if every finitely generated
regular ideal of R is invertible. A Priifer domain R is called a strongly discrete
Priifer domain, as in [20, 21}, if R has no nonzero prime ideals P such that P? = P.
A ring R € 'H is said to be a ¢-Priifer ring, as in [2], if ¢(R) is a Priifer ring. We
call a ring R € H a nonnil strongly discrete ring if R has no nonnil prime ideal
P such that P? = P. An integral domain R is called h-local, as in [20], if each
nonzero ideal of R is contained in at most finitely many maximal ideals of R and
each nonzero prime ideal P of R iz contained in a unique maximal ideal of R.
A ring R € H is said to be nonnil h-local if each nonnil ideal of R is contained in
at most finitely many maximal ideals of R and each nonnil prime ideal P of R is
contained in a unique maximal ideal of R.

The reader can easily verify the following two lemmas.

LemMMA 2.5, Let R € H. Then R is a nonnil h-local ring if and only if R/ Nil(R)
is an h-local domain.

LEMMA 2.6. Let R € H. Then R is a nonnil strongly discrete Priifer ring if and
only if R/ Nil(R) is a strongly discrete Priifer domain.

We recall the following result from [2].
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PROPOSITION 2.7 [2]. Let R € H. Then R is a ¢-Priifer ring if and only if
R/ Nil{R) is a Priifer domain.

Combining Lemmas 2.5 and 2.6 with Proposition 2.7 yields the following result.

PROPOSITION 2.8. Let R € H. Then R is a nonnil strongly discrete nonnil
h-local ¢-Priifer ring if and only if R/ Nil(R) is a strongly discrete h-local Priifer
domain.

Since the class of integral domains is a subset of H, the following result is a
generalization of {21, Theorem 2.3].

THEOREM 2.9. Let R € H. Then the following statements are equivalent.

(1) R is a ¢-ZPUI ring.

(2) Every nonnil proper ideal of R can be written as a product of prime ideals
of R and a finitely generated ideal of R.

(3) Every nonnil proper ideal of ¢(R) can be written as a product of prime
ideals of ¢(R) and a finitely generated ideal of ¢(R).

(4) R is a nonnil strongly discrete nonnil h-local ¢-Priifer ring.

Proof. Set D = R/Nil(R).

(1) == (2). Since R is a ¢-ZPUl ring, D is a ZPUI domain, by Theorem 2.3. Let
I be a nonnil proper ideal of R. Then, by [21, Theorem?.3], we have I/Nil(R) =
(J/Nil(R))(P1/Nil(R))...(P,/Nil(R)), where J is a (nonnil) finitely generated
ideal of R (by Lemma 2.4) and Py, P, ..., P, are prime ideals of R. Since Nil(R)
is divided, it is easily verified that I = JP; ... P,.

(2) = (3). Let L be a nonnil proper ideal of ¢(R). Then L = ¢(I) for some
nonnil proper ideal I of R. Since I = JP;...P,, where J is a (nonnil) finitely
generated ideal of R and Py, P, ..., P, are prime ideals of R, it is easily verified
that L = ¢(I) = ¢(J)p(P1)...¢(P,), where ¢(J) is a finitely generated ideal of
#(R) and ¢(Py),...,¢(P,) are (nonnil) prime ideals of ¢(R).

(3) = (4). Let ' = ¢(R)/Nil(¢(R)). Then every nonzero ideal of F' can be
written as a product of prime ideals of F' and a finitely generated ideal of F', and
thus F is a strongly discrete h-local Priifer domain, by [21, Theorem 2.3]. Since F’
is ring-isomorphic to D, we conclude that D is a strongly discrete h-local Priifer
domain, and hence R is a nonnil strongly discrete nonnil h-local ¢-Priifer ring, by
Proposition 2.8.

(4) == (1). Since R is a nonnil strongly discrete nonnil h-local ¢-Priifer ring,
we conclude that D = R/Nil(R) is a strongly discrete h-local Priifer domain, by
Proposition 2.8. Thus D is a ZPUI domain, by [21, Theorem 2.3}, and hence R is
a ¢-ZPUI ring, by Theorem 2.3. ]

Let R € H such that Z(R) = Nil(R). Then ¢(R) = R, and hence R is a ¢-ZPUI
ring if and only if R is a nonnil ZPUT ring. We state this connection in the following
corollary.

COROLLARY 2.10. Let R € H such that Nil(R) = Z(R). The following
statements are equivalent.
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(1) R is a nonnil ZPUI ring.

(2) R is a ¢-ZPUI ring.

(3) Every nonnil proper ideal of R can be written as a product of prime ideals
of R and a finitely generated ideal of R.

(4) R is a nonnil strongly discrete nonnil h-local Priifer ring.

Recall that a special primary ring is a quasilocal commutative ring R with maxi-
mal ideal M such that every proper ideal of R is a power of M. We state the
following useful lemma.

LEMMA 2.11 (see [21, Lemma 3.2 and Theorem 3.3]). Let R € H. Then R is a
ZPUI ring if and only if R is either a strongly discrete h-local Priifer domain, or a
special primary ring.

Proof. Suppose that R is a ZPUI ring. First observe that if a ring A =
Ay @ ... @ A, (where each A; is a ring with 1 # 0 ) and n > 2, then Nil(A4) is
never divided, and hence A ¢ H. Now, since R is a ZPUI ring, by [21, Theorem 3.3]
we have R = D, ®...& D, where each D; is either a strongly discrete h-local Priifer
domain or a special primary ring. Since Nil(R) is divided, by the observation that
we have just stated we conclude that n = 1, and thus R is either a strongly discrete
h-local Priifer domain, or a special primary ring. The converse is clear, by [21,
Theorem 3.3]. I:l

Our non-domain examples of ¢-ZPUI rings that are not ZPUI rings are provided
by the idealization construction R(+)B arising from a ring R and an R-module
B as in [19, Chapter VI]. We recall this construction. Let R(+)B = R x B, and
define:

() (B) + (5,0) = (r + 8.6+ 0);

(ii) (r,b)(s,c) = (rs, sb+rc).

Under these definitions, R(+)B becomes a commutative ring with identity. We
recall the following two facts.

PROPOSITION 2.12. Let R be a ring, B an R-module, and Z(B) the set of zero
divisors on B. Then the following statements hold.

(1) [19, Theorem 25.1]: The ideal J of R(+)B is prime if and only if J = P(+)B,
where P is a prime ideal of R. Likewise, the ideal .J of R(+)B is maximal if and
only if J = P(+)B, where P is a maximal ideal of R. Hence the Krull dimension
of R is equal to the Krull dimension of R(+)B.

(2) [19, Theorem 25.3]: (r.b) € Z(R(+)B) if and only if r € Z(R) U Z(B).

Olberding showed in [21, Corollary 2.4] that for each n = 1, there exists a ZPUI
domain with Krull dimension n. A Dedekind domain is a trivial example of a ZPUI
domain.

THEOREM 2.13. Let A be a ZPUI domain (that is, A is a strongly discrete h-
local Priifer domain, by [21, Theorem 2.3]) with Krull dimensionn > 1 and quotient
field F, and let K be an extension ring of F' (that is, K is a ring and ' C K). Then
R = A(+)K € H is a ¢-ZPUI ring with Krull dimension n that is not a ZPUI ring.
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Proof. 1t is easy to see that Nil(R) = {0}(+)K. We show that Nil(R)
is divided. Let (0,%k) € R, and let (a,b) € R\ Nil(R). Then a # 0, and hence
(0,k) = (a,b)(0,k/a). Observe that k/a € K because F C K. Thus R € H.
R is not a ZPUI ring, by Lemma 2.11. Since R/Nil(R) = A is a ZPUI domain,
we see that R is a ¢-ZPUI ring, by Theorem 2.3. The Krull dimension of R is n,
by Proposition 2.12(1). -

In the following theorem, we show that a ¢-ZPUI ring is a pullback of a ZPUI
domain. A good reference for pullback is the article of Fontana [13].

THEOREM 2.14. Let R € H. Then R is a ¢-ZPUI ring if and only if ¢(R) is
ring-isomorphic to a ring A obtained from the following pullback diagram, where
T is a zero-dimensional quasilocal ring with maximal ideal M, A/M is a ZPUI ring
that is a subring of T /M, the vertical arrows are the usual inclusion maps, and the
horizontal arrows are the usual surjective maps.

S —— A/M

l I

T —— T/M

Proof.  Suppose that ¢(R) is ring-isomorphic to a ring A obtained from the
diagram given in the theorem. Then A € H and Nil(A4) = Z(A) = M. Since A/M
is a ZPUI domain, A is a ¢-ZPUI ring, by Theorem 2.3, and thus R is a ¢-ZPUI
ring.

Conversely, suppose that R is a ¢-ZPUI ring. Then, letting T = Ryiry, M =
Nil(Rnicr)), and A = ¢(R) yields the desired pullback diagram. ]

3. Nonnil ZPUI rings and nonnil ZPI rings

We start with the following result.

THEOREM 3.1. Let R € H be a nonnil ZPUI ring. Then R is a ¢p-ZPUI ring,
and hence all the following statements hold.

(1) R/Nil(R) is a ZPUI domain.

(2) Every nonnil proper ideal of R can be written as a product of prime ideals
of R and a finitely generated ideal of R.

(3) Every nonnil proper ideal of ¢(R) can be written as a product of prime
ideals of ¢(R) and a finitely generated ideal of ¢(R).

(4) R is a nonnil strongly discrete nonnil h-local ¢-Priifer ring.

(5) R is a nonnil strongly discrete nonnil h-local Priifer ring.

Proof.  Let L be a nonnil proper ideal ideal of ¢(R). Then L = ¢(I) for
some nonnil proper ideal I of R. Since I = JP,P,...P,, where J is an
invertible ideal of R and Py, Py, ..., P, are prime ideals of R, it follows that

L=¢(l) = o(N)o(P1)...d(Fy),

where ¢(.J) is an invertible ideal of ¢(R) and &(Py), ¢(P2),...,$(P,) are prime
ideals of ¢(R). Thus R is a ¢-ZPUI ring.
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Now statement (1) is clear by Theorem 2.3, and statements (2), (3) and (4) are
clear from Theorem 2.9. For statement (5), by [2] just observe that R is a Priifer
ring because R is a ¢-Priifer ring. J

In the following result, we show that if R € H is a ¢-ZPUI ring, then R does not
need to be a nonnil ZPUI ring. In particular, we show that if R € H satisfies any
of the five statements in Theorem 3.1, then R does not need to be a nonnil ZPUI
ring.

THEOREM 3.2. Let A be a ZPUI domain that is not a Dedekind domain, with
Krull dimension n > 1 and quotient field K. Then

R=A(+)K/AeH
is a ¢-ZPUI ring, with Krull dimension n, that is not a nonnil ZPUI ring.

Proof.  Since Nil(R) = {0}(+)K/A, by a similar calculation to that given in the
proof of Theorem 2.13, we conclude that Nil(R) is divided, and thus B € H. Since
R/Nil{R) = A is a ZPUI domain, R is a ¢-ZPUI ring by Theorem 2.3, and the
Krull dimension of R is n by Proposition 2.12(1). Since every non-unit element of
R is a zero divisor of R by Proposition 2.12(2), we conclude that T(R) = R, and
thus R is the only invertible ideal of R. Suppose that R is a nonnil ZPUT ring. Then
every nonnil proper ideal of R is a finite product of prime ideals of R, and hence
every proper ideal of the integral domain R/ Nil(R) & A is a finite product of prime
ideals of R/ Nil(R). Thus R/Nil(R) & A is a Dedekind domain, a contradiction.
Hence R is not a nonnil ZPUI ring. O

Recall from [16] that a ring R is called a ZPI ring if every nonzero proper ideal
of R is uniquely a product of prime ideals of R, and R is called a general ZPI ring
if every nonzero proper ideal of R is a product of prime ideals of R. In [4], it is said
that a ring R € 'H is a nonnil ZPI ring if every nonnil proper ideal of R is uniquely
a product of (nonnil) prime ideals of R, and it is said that R is a general nonnil
ZPI ring if every nonnil proper ideal of R is a product of (nonnil) prime ideals of
R. A ring R € H is called a ¢-Dedekind ring as in [4], if every nonnil ideal of R is
invertible. A ring R € 'H is called a nonnil Noetherian ring as in [9] if every nonnil
ideal of R is finitely generated.

We recall the following two results from [4].

PROPOSITION 3.3 [4, Corollary 2.17].  Let R € 'H. Then the following statements
are equivalent.

(1} R is a ¢-Dedekind ring.

(2) R is a nonnil ZPI ring.

(3) R is a general nonnil ZPI ring.

PROPOSITION 3.4 [4, Proposition 2.11]. Let R € H be a nonnil Noetherian ring.
Then R is a ¢-Dedekind ring if and only if R is a ¢-Priifer ring.

Combining Propositions 3.3 and 3.4 with Theorem 2.9, we arrive at the following
result.
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- COROLLARY 3.5. Let R € H be a nonnil Noetherian ring. Then the following
statements are equivalent.

10.

12.
13.

14.
15.

16.

17.

18.

19.

21.

Ne e

(1)
(2)
(3)
(4)
(5)
(6)

> U U U

R is a ¢-ZPUI ring.

R is a nonnil ZPUI ring.

R is a nonnil ZPI ring.

R is a general nonnil ZPI ring.

R is a nonnil strongly discrete nonnil h-local ¢-Priifer ring.

R is a nonnil strongly discretere nonnil h-local ¢-Dedekind ring.
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